Versatus: A Tech Stack to Power a
Decentralized Web

By: Andrew Nicholas Smith & Matthew Geddes
Organization: Versatus Labs
Email: Andrew Nicholas Smith <as@versatus.io>, Matthew Geddes <mg@versatus.io>
Organization Email: info@versatus.io
Website: versatus.io

N ¢ =3 1 T 1

[11 oo 11 T3 o o T PSSO 2

NEEWORIK......cceie e e e e e e re s e s e e e e e e reemss s s s s s ee e e e e nmmassssss s eereesnmnnsssssssssenennnnnnssssasssseesnnnnnnnn 3

Decentralized DINS....... ..ottt e e e e e e e et e e e e e e e eeanaas 4

F 01 ot Tor=1 1 T R PP PP PP 5

Load Balancing & SCheduling..............uuiiiiiiiiiiiiiieeieeeeeeeeeeeeeee e 7

State Of the NEIWOIK........coi e e e e e et e e e e e e e e eeaenas 8

TS To N1 PSP PPPP RO TPPPPP 9

Multilayer App-Specific Nano Runtime..........cccccei i icisissscssssssrsrs s sssnnnns 9

(070]a 0T o101 LI 0 =Y o) S 11

Executable Oracle..........ccccciiiiiiiiiiii e nnn e 1"

Oracle EVENE EMISSION........ii et e e e e e e 12

E o (o) ST PSP OO UUPPPPRRPPPN 12

= (o3 (o] [T OO EPPTRPRIN 12

1 E] 1 U e 1o o 1 o [T (o 13

DT o T=Y =T R 13

Bridgeless INteroperability...............eeieiiiii s 14

Data Availability Layer INtegration.............coooo e 15

WaAtChEr NEIWOIK.e ettt e e e et e e e e e e e eeeeaes 16

L0 o 0T 11 E=] oY o 17
Abstract

The modern digital era demands internet infrastructure that is both resilient and free from
centralized control and vulnerability. Unfortunately, today, the web is captured by a small group
of centralized mega-corporations with incentives that differ from the users of the web. This paper
introduces the Versatus network. Versatus is a pioneering architecture designed to deliver on the
promises of what has been dubbed “web3”. Versatus combines the speed and security of
contemporary internet stacks with the benefits of decentralization and censorship-resistance. At
the core of the architecture are three innovative layers: a cutting-edge peer-to-peer networking

mailto:as@versatus.io
mailto:mg@versatus.io
mailto:info@versatus.io
http://www.versatus.io

layer, a versatile application specific nano runtime, and an executable oracle that simulates a
stateless rollup for seamless on-chain, off-chain and cross-chain integration. Together, these
components offer a holistic solution addressing the challenges of modern internet usage, from
communication protocols to decentralized compute and smart contract execution. With its
forward thinking design and emphasis on flexibility and extensibility, the Versatus network
stands as a beacon for the future of the web, promoting an open, secure, and inclusive digital
landscape.

Introduction

Herein we present an architecture to power a new generation of internet, one free from
censorship, free from predatory data capture with the speed and security of the modern internet
stack we have grown to love. The architecture leverages tools that already exist to accomplish
this feat, while introducing a few new concepts to glue together existing tools under a modern
architecture. The architecture enables developers to build full-stack web and mobile applications,
websites, host on-demand long-running compute jobs, and build smart contracts that are
language agnostic, and can use any public blockchain or distributed ledger for settlement. The
architecture, at a high level, consists of 3 layers:

First, a modern peer to peer networking layer built to facilitate the stack. The network layer not
only consists of and facilitates multi-protocol transport with TLS, but also incorporates a
decentralized Domain Name Service, a decentralized Content Delivery Network, the ability to
persist the state of the network, and is compatible with all communication protocols used by
modern applications[1][2]. It is designed to be extensible so that proprietary communication
protocols, as well as future standard protocols can be integrated seamlessly[1].

Everything other than HTTP verbs and Versatus RPC methods are handled by the programs
themselves. With this flexibility of communication protocols, it enables users to access browser
based services, mobile app services, email services, file sharing services, streaming services, as
well as for devices to communicate directly with the network and services deployed to the
network][1].

Second, a multi-layer application specific nano runtime that enables on-demand, rapid
instantiation functions and compute tasks in an environment that has layered containment for
security, hardware and software virtualization for platform agnosticism across heterogeneous
machines, and modular extensible runtimes for programming language agnosticism and
verifiability, both through redundant execution as well as cryptographic techniques[3]. These
app-specific nano runtimes are designed to operate in a similar vein as functions, that said, they
are capable of doing more. They are turing complete, hyper lightweight full ISA virtual
machines, with multiple layers of containment for security purposes.

Third, an Executable Oracle to simulate a stateless rollup to power language agnostic, settlement
layer agnostic smart contracts[4][5]. The executable oracle works, in many ways, similarly to
data oracles built on top of blockchains, but with programmability[6]. When a user interacts with
a program in the network through a given chain, the contract emits an event, a relay node picks
up the event and structures an RPC call into the Versatus network, passing the necessary data to
the network. The network schedules the job with a quorum of worker nodes, and when the job is
complete and verified by the collector quorum, the results are posted via a transaction from the
Oracle account back to the oracle. The results provide the oracle with instructions on what to do
next. This model moves the execution of compute tasks off chain, while ensuring verifiable
results settle on chain[7]. Combining this with a network of “watchers” to ex-post validate the
compute results and potentially slash any node(s) that post errant or malicious results further
enhances the security of the network, providing economic incentives to participate honestly[8].

GetiPost/PutiPatchiDelete

GETPOSTIPUT

File & Asset Storage Blockchains
Tsowore Sy Tsoare Sys]

2P Network Get & post Rex |

e 525 etwo icIs fromito External File Storage Networks

The Entry Point by CADDR File Storage
= Networks
~ (Sotware Syse)
etwor)
Send: t
' hain(s)

[software System]

Network

The node client is built to be both a server and a client, as many Peer to Peer nodes are, however,
it is also built to be modular and configurable[9]. An operator can run a full-node, which
includes all functionality, or can choose which service within the network they would like to
participate in[9]. For example, an operator may choose they only want to provide relay, and not
do any compute, state persistence, or service hosting. On the other hand, they can opt to only
provide compute or only state persistence. Nodes may also configure the types of compute jobs
they want to participate in[10].

The node client is also designed such that operators can easily federate the services in their own
operational domain, and for example, run a compute service on one node, while running a state

persistence service[11]. This model ensures that node operators can choose the service(s) their
hardware and infrastructure can best handle and separate roles in a way that provides both their
organization and the network maximum benefits[1]. Nodes join the network over a peer to peer
networking protocol, which establishes and maintains their connection to other nodes in the
network[12].

Decentralized DNS

The Versatus DeDNS operates over a stateless DNS facade that can handle any DNS request for
resource records for entities on the network. The DNS facade instead of recursively searching the
hierarchical structure of traditional DNS, searches the Versatus protocol and uses the content
address to locate the resources requested[12]. Under traditional DNS a request is sent to the ISP
DNS resolver, which checks its records to see if the record attempting to be discovered is
available in the ISP DNS cache. If so, it responds with the IP address of the server hosting the
resource. If not, it recursively searches the Root DNS server, and then the Top Level DNS server.
The IP address of the record’s Authoritative Domain server is returned to the user and the
process ends. The diagram below shows the traditional DNS process.

Authoritative e Leyel
Domain Server Domain
DNS
Records
S~
Establish
Connection ISP DNS Root DNS
Server
Actor
DNS Records
Request ~_
\

Recursive
Resolver

=
Records

Under the Versatus DeDNS the process is similar but with some key differences. When the
request begins a request to the configured web3 resolver is sent. The resolver forwards the
request to the Versatus network. Node(s) pick up the request, search their local cache, if not
available, check the global state. If the record does not exist in the global state, the resolver falls
back to web2. For records that do exist in the global state of the network, the resolver responds
with the IP address of the service, to which the user's browser initiates the connection using
standard IP mechanics. Resources are redundantly cached on many nodes, and nodes rotate, over
time, the resources that they store. Nodes earn by actively maintaining resources in accordance to

the protocol and servicing requests. Typically, nodes rely on existing decentralized file storage
protocols for file storage[12].

Fallback to
Traditional
DNS

Global State

Establish Versatus Record in
Connection Network lobal State
Actor A
Node(s) with
DNS Resource
Request Respond with
IP

A\ .

Web3 Cached
Resolver Records

Auto-Scaling

As will be discussed in more detail in the section on our Multilayer App-Specific Nano Runtime
model, all services are static and all compute tasks in the network are pure functions. Leveraging
serverless architecture enables rapid auto-scaling of compute enabling even the most load heavy
applications to utilize the Versatus network for deployments[11]. That said, a protocol for
handling load balancing and auto-scaling is necessary. Fortunately, the way the DeDNS and the
network at large are designed, programs in the network are highly redundant across the network.

»(User

Request for Resource

Respond ¢
to User s N
Quorum Responsible for Compute Resource

—_‘ Node ‘ Node ’ Node ’ ‘ Node ’
‘ Node ‘ Node ’ Node ’ Node
Resource

While not every node is required to maintain a local version of every resource, quorums of nodes
are required to maintain resources, and the number of quorums required to maintain a specific
resource is auto-incremented as the need to scale that resource increases. When a given resource
is being requested at a significant rate, and as a result, the time between request and initialization
of the execution increases beyond 15 seconds for over 1,000 consecutive requests for the same
resource, a new quorum is automatically introduced and required to maintain the resource and
service requests for the resource.

This auto-scaling mechanism, in a peer to peer network, is theoretically infinite. To
accommodate the nodes in the quorum having to maintain an additional resource, a peak load
pricing mechanism kicks in enabling nodes to earn additional income by accepting the
responsibility. On the flip side of the same coin, when the time between request and initialization
of execution is less than 50 milliseconds for 1,000 consecutive responses for the same resource,
the quorum responsible for the resource with the largest average XOR distance from the resource
can drop their local redundant copy of the resource, and no longer are required to maintain it.
Under the peak load pricing scheme, the income earned for servicing the resource declines until
an equilibrium is found. For most resources, a single quorum of nodes is all that will ever be
required. However, for frequently accessed and requested resources, redundant availability on
every node in the entire network may be required. This market mechanism works to ensure
resource availability is maximized, response times are minimized and scaling is handled
automatically[11].

Responds Responds

with Resource with

But takes Resource
longer than But takes
Expected Request Request Request Request Request Request [longer than
for for for for for for Expected
Resource Resource Resource Resource Resource Resource
A A A A A A
(| [I] J
v

First Quorum Responsible for Resource A

77‘ Node ‘ ‘ Node ‘ ‘ Node ‘ ‘ Node ‘

Network Assigns

a Second Quorum

to Horizontally Scale
Access to Resource

Y Network
[Resource A ‘] Quorum
I Assigment

Second Quorum Responsible for Resource A

‘ Node ’ ‘ Node ‘ ‘ Node ‘ ‘ Node ‘

Load Balancing & Scheduling

For load balancing in a network where a single node is handling responses to requests for
multiple resources, auto-scaling applications with frequent requests or spikes in requests is not
the only concern. A general load balancing mechanism is needed, and the Versatus network uses
a leaderless decentralized task scheduler for both intra and inter quorum workload scheduling.
Nodes that are already at maximum capacity of tasks can forward tasks to other nodes. When
sharing the task with another node, the originating node shares their current backpressure, a
measure of their current workload.

The receiving node(s) respond with their backpressure. Every time a workload is shared, proof
that the originating node is indeed overwhelmed is provided, and as time passes, if that workload
lightens, then the update to the back pressure will become stale and will be ignored. Once
ignored, the node that was previously overwhelmed can have tasks shared with it again. Over
time, the network works to relieve back pressure of nodes that are overwhelmed with tasks
through this task sharing mechanism. Nodes that pass on executing a task still receive incentives,
despite not executing the task themselves. On the other hand, if a node takes too long to respond
to a request because it is overwhelmed, a node that is further away may “steal” the task by
responding to it sooner than the overwhelmed node can. In this case the node does not receive
any of the incentives related to executing the task. As a result, nodes have an inherent incentive

to share work rather than have it stolen, facilitating a smooth and fast response time for any
requests for any resources[9].

If Backpressure
of Node A is
high, but
Node A retains

Request for request

Multiple and has it

@er\
Node Responds
to Request.

Resources stolen by Node
— C, and Node
— C completes
Response

before Node A
Node n Node Node A Loses
Responsible the whole
Fee.

If Node
Forward
Request

responsible
Node C Knows

Check Backpressure forwards
request to
Node n
Node responsible
gets

a Fee Share
Low
Backpressure

Backpressure

)4
Has High

Node A
Backpressure Retain

Steal Yes [

Request { Handle Request F

State of the Network

In order for the peer to peer network to know about the resources, and have made available said
resources, the maintenance of a low cost, reasonably scalable, secure global state is necessary.
Every resource deployed to the Versatus network is content addressed. This is the case whether it
be files stored on third party decentralized file storage networks, programs stored on compute
nodes in the network, or on-demand compute resources available to users and developers
interacting with the network.

The content address is the unique ID of the resource, program package, or runtime package’s
original content that the node's compute agent uses to build the resource. In the case of programs,
this could involve compiling the program according to the configuration file, or running it
through a specific runtime in the case of higher level language programs. For static files, this
could involve caching, sharing with peers and other processes to ensure rapid availability when
needed. Those content addresses need to be made available to every node in the network, so a
Global State and Data Availability layer that saves those content addresses, and any necessary
mapping to/from records, human readable addresses and metadata is necessary to the operation
of the network at web-scale. For this global state and data availability layer we use an innovative,
modular and scalable blockchain architecture.

P2P Network
{corane]

~~ - Transport is the Entry & Exit
~ __ Point for the P2P Network
=~
~<
-
= -
Transport Runs all Incoming Messages through

the Protocol Which Processes Message and
Passes it to proper component

r ~

| S N ~ AN

| >~ h A Discovery N

- {comgoneni) ® N
| ~ N N
| ENE N \
~ N N \
~
\ - . N
N\
; Forward Error

Security - dDNS R Y Blockchains
[Componen I C“’C:rme::"“"" nnnnnnnnnnn [Sofware System]

~ * F4

~_ v
~ | e
~= | 2l
S~ s
~ 4 i

Global Network State
{comtaner]

Security

The Versatus compute network uses a modified Proof of Stake algorithm called HoneSTake,
which uses a reputation score driven dynamic staking protocol for centralization resistance. The
network also employs stateless ultra-light clients, and where necessary, cryptographic proofs,
such as ZK proofs, to ensure validity and implement stake slashing mechanisms. This ensures
that nodes in the network can provide the resources and services they claim to, do so honestly,
and are not errant, bug-ridden or otherwise faulty. For a decentralized, permissionless network,
where anyone can participate, the stakes are higher. Avoiding the delivery of malicious services
or resources is mission critical. The HoneSTake algorithm is also restaking compatible, and can
use restaking protocols to leverage existing networks of trust and security[13]. By participating
honestly in the network, node operators benefit from reduced stake, which ultimately means a
greater return on their investment over time.

Multilayer App-Specific Nano Runtime

To power a developer experience that is seamless, and enables language agnostic, tooling
agnostic services, compute, functions and smart contracts, Versatus has designed an app-specific
nano-runtime that is specifically built for decentralized compute[14]. Decentralized compute is a
challenging problem, not only because of the communication challenges, of which we address in
the above section on the peer to peer network, but also because of heterogeneity of the nodes
operating within the network[15]. Nodes in the network operate on different chip architectures,
have different resources available, and are optimized for different workloads.

Advancement of containerization and library operating systems (unikernels) over the past 15
years, combined with modern knowledge of distributed and decentralized systems, a
serverless-only architecture is now possible over a peer to peer network securely, at scale[16].
Techniques such as crypto token emission and restaking make bootstrapping such a network
economically viable[17].

The Versatus app specific nano-runtime consists of 3 to 4 layers of containment under different
scenarios. For long running compute jobs, a language runtime embedded in a unikernel runtime,
wrapped in an OCI compliant container, provides all the functionality necessary in a lightweight
package that can be booted on demand in milliseconds, run to completion, and have results
returned. Pure functions can be built with the exact same stack, in any language, except with
shorter run cycles. Under both of these paradigms, the application executed within this runtime
stack can be as small as the developer likes or as large as they need.

On the flip side, smart contracts, which necessarily need restrictions imposed on them, are run in
a runtime stack that has all of the 3 previous components mentioned, but also contains a
modified WASM/WASI layer to eliminate potentially dangerous syscalls that could cause trouble
under the conditions required by a smart contract[18]. Among those conditions include
redundant execution across a quorum of nodes, consensus on the results of the execution, and the
ability, therefore, to direct significant resources from a significant number of nodes in the
network during spikes in requests. The modified WASM/WASI layer offers an additional layer of
containment, making exploiting the contract more difficult, and when combined with the other
layers of containment eliminates the ability to open sockets, access host file systems, and enable
system standardized timeouts to be implemented, among other things.

Additional benefits to the introduction of a WASM/WASI layer include:
e Optimal abstraction and extensibility
e Total architecture/hardware independence
e C(lear interfaces for fostering modularity

Under this architecture, and given the layers of containment, a model in which data is piped into
and out of the entry point of each program provides nodes in the network with a standardized
way to execute any request any user, device or other program may have. It also provides a very
simple and elegant design for integrating multiple services and programs deployed to the
network with one another. Execution of a program that relies on the execution of other programs
becomes inherently atomic. Either the entire sequence of programs execute and return valid
results or the entire sequence of tasks is considered invalid. This model also provides great
transparency into any errors, as the return results can be returned to stdin, stdout or stderr.
Whether debugging a program before deploying, or gathering information to report a bug to a

developer through the proper channels, users and developers alike benefit from verbose failures
that are returned to the interfaces from which the program is being executed.

Payload { Payload ’
WASM Runtime ‘ Unikernel VM J

Unikernel VM

‘ Container Runtime]

‘ Container Runtime]

[
Results Returned
to Compute Agent

Results Returned

to Compute Agent is "piped" i R :
and Protoc+ol via Host nga:alisne':f:::y I;c:?nt Eg:t\;; e':frftdry I:;?nt and Proto;ol via host
‘ Compute Agent l
Compute Agent can make A
limited number of host syscalls v Host Engages Compute Agent
Host]
Compute Agent

The Compute Agent in the Versatus node client acts as a container builder, execution engine, and
a communicator with the host resources. The compute agent serves as an orchestrator and
executor of the nano-runtimes on behalf of the protocol. When a request to execute a compute
job or smart contract is received, the compute agent rapidly assembles, executes, and discards the
container with the embedded payload. The developer can provide references to dependencies, job
parameters and execution environments in package metadata. The compute agent can schedule
execution of tasks in sequence, if necessary, or where possible, execute multiple payloads at the
same time, or in parallel.

Executable Oracle

In order for the Versatus network to accept execution instructions from blockchain networks for
smart contracts deployed to Versatus, and to return results that ultimately alter the state of the
blockchain network, a novel design of a stateless rollup that we have coined an “Executable
Oracle” is implemented as a smart contract on the base layer to which the smart contract
deployed on Versatus is configured to settle to[19]. The executable oracle consists of 5 core
components: Oracle Event Emission, Escrow, Factories, Instruction Ingestor and a Disperser.

Blockchains
[Software System]
- - - > Stores all of the core banking
information about ¢ er, accounts,
transactions, etc.

Event Emission
[Component]

Factories Escrow
[Component] [Component]

Instruction Ingester Disperser
{Component] {Component]

Oracle Event Emission

When a user interacts with an endpoint that calls a smart contract on Versatus, a transaction is
routed to the executable oracle on the settlement layer chain[20]. The transaction does 2 things, it
escrows funds committed by the transaction, and emits an event using the oracle function. The
event consists of the data that will eventually be fed, by the Versatus compute agent, into the
smart contract’s nano-runtime entrypoint. The data will inform the smart contract which program
to execute, which operation(s) to call, and what the parameters for the operation(s) will be.

Escrow

The oracle contract temporarily escrows the funds to ensure they will be available for the
completion of the transaction[21]. Only the disperser component of the executable oracle can
allocate funds from escrow or from a transaction posting results to the contract, and only the
oracle account itself can call the instruction ingestor, which is the only component that can call
the disperser.

Factories

A series of factory contracts that can enable the creation of a variety of standardized contracts on
the base layer are provided[22]. These factory contracts also allow the executable oracle to
deliver the contract address(es) when created to the Versatus network so that they can be content
addressed, and engaged with in the future via the network, without retaining the contract
addresses in the oracle contract itself.

Instruction Ingestor

The instruction ingestor is what it sounds like. It takes a transaction which consists of results
produced by the off-chain execution of the root smart contract deployed to the Versatus network,
parses and creates parameters to be passed into the disperser to complete the transaction[23].

Disperser

The disperser takes in parameters passed to it by the instruction ingester and can either make
calls to external smart contracts on the base layer, dispersing the funds held in escrow to that
contract for further execution, or can disperse the funds to wallet addresses provided as
parameters by the instruction ingestor. The disperser cannot be called by any external entities,
and can only be called by a single component, the instruction ingestor, which can only be called
by the oracle account that passes in the results of the execution[19].

Python ERC

20 Contract

Deployed on
Versatus

\ Versatus Compute Network

A

\SEnds Results to Oracle Account

Oracle Emits Event, Versatus Network Listens for Events.

Account
Oracle
Escrow
User
Account Posts Factories
Instructions to Contract

>
Standard FT
Standard NFT

Interface -
-
User Makes a Request
Instruction

Ingestor

e

Disperser

Base Chain

By moving execution off-chain, without state maintenance being moved off chain, the executable
oracle, when combined with the Versatus network and nano-runtimes, enables language agnostic,
chain agnostic, stateless smart contracts, bringing a flexible and seamless developer experience
to any chain it is integrated on[21]. Beyond language agnosticism, the executable oracle model
also enables bridgeless interoperability and interchain communication without having to encode
and decode messages from one chain format to another[20]. It also doesn’t have to worry about
cross chain sequencing and differences in views of state between account(s) on one chain and
account(s) on another. Further, the Versatus network enables “one deployment, many chain”

capabilities. Any chain with oracle capabilities and factory contract capabilities can have the
power of the Versatus network built on top of it.

Bridgeless Interoperability

Employing a mint and burn model, facilitated by Versatus Executable Oracles deployed on
multiple chains enables assets to seamlessly be moved from one chain to another with no bridge
locks and no “wrapped” versions of the coin[22]. By having a native smart contract deployed
under the “one deployment, multiple chains” model, and providing update data to each contract
upon the mint or burn of tokens to every network it is deployed to, each time it occurs via the
Versatus network, the executable oracle can seamlessly enable interoperability across chains.

(
FT
Contract

1. Developer deploys Fungible Token on
on Versatus with instructions for it \ersatus Executable Oracle B, to
to be deployed to chain A and mint FT token on Chain B,
chain B. Executable Oracles on one on Executable Oracle
each chain use Factory to create A to burn FT token on
native FT on each chain. Chain A.

4. FT Contract on Versatus
network executes, return

results, which triggers two
transactions. One through

Versatus Network }

3. Executable Oracle A
locks tokens in Escrow
and emits event to

ET Versatus Network with all

data necessary. FT
Contract Executable Executable Contract
on CAham Oracle A Oracle B on Chain
B

Executable
Oracle A
Account

Executable
Oracle B
Account

I R b

[Chain A [Chain B }

2. User minted token on

Chain A, but wants to ()
transfer to Chain B. User J
sends tx to Executable
transferTo chain B

User

This goes far beyond simple asset transfers from one chain to another, however. The Versatus
network, through its Executable Oracles can enable cross chain composable programs so long as
the starting program is deployed to the Versatus network, the ending program is deployed to the
Versatus network, and any sequence of cross chain executions include a program deployed to the
Versatus network in the middle. Hopping directly from a contract on one chain to a contract on
another chain is something the Versatus network does not enable, however, through programs
deployed to the Versatus network, and the Executable Oracles deployed on multiple chains, the
ability to communicate through said programs from one chain to another is possible.

Contract

Oxabc...def

A

1. Versatus Network Receives Event from Chain A 3. Versatus Network Receives Event from chain B
to Execute contract Oxabc...def, which is with results from executing contract Oxdef...123,
dependent on Contract 0xdef...123 on Chain B, and passes the params into contract Oxabc...def
and settles back to Chain A. on Versatus Network.

Y
Versatus Network

A A 2. Verstaus Network uses a
4. When Contract Transaction to tell Executable
Oxabc...def on Versatus Oracle B to execute Contract
S network completes Oxdef...123 with certain parameters.

execution, Versatus \When Contract Oxdef...123 has

Network sends transaction completed, Executable Oracle B

to Chain B using emits an event with the results of

Executable Oracle A execution of Contract Oxdef...123

Account.

Contract
Executable Executable Executable Oxdef...123 Executable

Oracle A Oracle A Oracle B hai Oracle B
Account on Chain Account

A

5. Executable Oracle A
completes transaction &

Chain A react
consensus é
v # \ 4

Chain A J ‘ Chain B

Data Availability Layer Integration

The Versatus network, while it does maintain its own global state of resources available to the
compute nodes in the network, does not require transaction data be maintained on the Versatus
global state or data availability layer[23]. Instead, the Versatus network is DA layer agnostic, and
can integrate with any modular DA layer, as well as monolithic and hybrid blockchain networks
to facilitate Data Availability to validators to recreate, reconstruct, and re-execute transactions to
produce fraud proofs.

Python ERC
20 Contract

Deployed on
Versatus

Posts Full Transaction ‘

) Data to EigenDA
EigenDA |« ‘ Versatus Compute Network

Watcher Network

When integrating with external chains and DA layers, a network of ultra light validators that can
sample from DA, reconstruct and re-execute transactions from the transaction data alone is a
major benefit[19]. Scalable, modular DA layers such as EigenDA and Celestia enable this
architecture. The Versatus watcher network employs a dual-staking model, just as the Versatus
compute network does, enabling nodes to either stake in native Versatus tokens or to stake using
ETH tokens using a restaking protocol that Versatus has integrated with.

Watcher Python ERC
20 Contract
Deployed on
Versatus
Watcher Network Samples DA '}
Watcher Posts to Ex-P0§t Reconstruct & Execute
Fraud Proof Transaction
Y
Posts Full Transaction
. Data to EigenDA
EigenDA = ‘ Versatus Compute Network
A
Sends Results to Oracle Account
Y Oracle Emits Event, Versatus Network Listens for Ev
Account
Oracle
Escrow
Account Posts Factories
Instructions to Contract
Standard FT
EigenDA Sends Proof Standard NFT
Instruction
Ingestor
Disperser

The digital landscape evolves rapidly. With it, the need for a more decentralized, secure and
efficient web architecture becomes paramount to building a more informed, transparent and
accountable global society. Versatus, as presented in this paper, offers a groundbreaking solution
to many of the challenges faced by today’s web infrastructure. Using existing tools, while
introducing innovative concepts, Versatus promises a new generation of the web that is resistant
to censorship and predatory data capture, while maintaining the speed and security of the modern
web.

At its core, the Versatus architecture is built on three foundational layers: a modern peer-to-peer
networking layer, a multi-layer application-specific nano runtime, and an executable oracle that
simulates a stateless rollup. Each layer is meticulously designed to ensure seamless integration,
scalability and robustness. The network’s ability to facilitate a wide range of communication
protocols, coupled with its modular and configurable node client design, ensures flexibility and
adaptability to future technological advancements.

The introduction of the Versatus app-specific nano-runtime revolutionizes decentralized compute
by addressing the challenges of heterogeneity among nodes and ensuring a seamless developer
experience.

The executable oracle, which simulates the functionality of a stateless rollup, bridges the gap
between off-chain execution and on-chain settlement. In doing so, it enables language agnostic,
chain agnostic smart contracts, enables bridgeless cross-chain token compatibility, and albeit
with a tradeoff of latency, cross-chain integrations.

The Versatus network is not just a theoretical concept, but a tangible solution that holds the
potential to reshape the future of the web. Its emphasis on decentralization, security and
scalability positions it to lead the next iteration of the web. As the digital world continues to
grow and change, Versatus will be instrumental in ensuring the web remains open, secure and
accessible to all.

[1] Jacobs & Harwood, A Peer to Peer Browsable
File Index using a Popularity Based Global
Namespace, 2007

[2] Kashaf, et. al., Oh, What a Fragile Web We
Weave: Third-party Service Dependencies In Modern
Webservices and Implications, 2018

[3] Inselvini, Spam Prevention Using zk-SNARKs
for Anonymous Peer-to-Peer Content Sharing
Systems, 2021

[4] Nazirkhanova, Neu & Tse, Information Dispersal
with Provable Retrievability for Rollups, 2021

[5] Tas, et. al., Accountable Safety for Rollups, 2022
[6] Motepalli, Freitas & Livshits, SoK: Decentralized
Sequencers for Rollups, 2023

[7] Adler & Quintyne-Collins, Building Scalable
Decentralized Payment Systems, 2019

[8] Ye, Misra & Song, Specular: Towards
Trust-minimized Blockchain Execution Scalability
with EVM-native Fraud Proofs

[9] Thoren, Taheri-Boshrooyeh & Cornelius, Wako:
A Family of Modular P2P Protocols For Secure &
Censorship-Resistant Communication, 2022

[10] Ishii & Inoie, An initial peer configuration
algorithm for multi-streaming peer-to-peer networks,
2012

[11] Dogra, et. al., Integrated Modular Solution for
Task Oriented Manipulator Configuration Design,
2021

[12] Anwar, et. al., Leveraging Social-Network
Infrastructure to Improve Peer-to-Peer Overlay
Performance: Results from Orkut, 2005

[13] Smith, HoneSTake: A Dynamic, Centralization
Resistant, Reputation Driven Staking Protocol for
Enhanced Security and Governance in Permissionless
Peer-to-Peer Blockchain Networks, 2023

[14] Hong & Verghese, Resource Management in
Fog/Edge Computing: A Survey, 2018

[15] Tordera, et. al., What is a Fog Node A Tutorial
on Current Concepts towards a Common Definition,
2016

[16] Cesarano, Security Assessment and Hardening
of Fog Computing Systems, 2023

[17] Bouachir, et. al., Blockchain and Fog Computing
for Cyberphysical Systems: The Case of Smart
Industry, 2020

[18] Wilhelmi, et. al., On the Decentralization of
Blockchain-enabled Asynchronous Federated
Learning, 2022

[19] Beniiche, A Study of Blockchain Oracles, 2020
[20] Xian, et. al., A Distributed Efficient Blockchain
Oracle Scheme for Internet of Things, 2023

[21] Pasdar, Dong & Lee, Blockchain Oracle Design
Patterns, 2021

[22] Adler, et. al, Astrea: A Decentralized Blockchain
Oracle, 2018

[23] Goel, et. al., Infochain: A Decentralized,
Trustless and Transparent Oracle on Blockchain,
2019

